Главная Новости

Способ образования центров окраски в алмазе

Опубликовано: 06.09.2018

Изобретение относится к области создания материалов для пассивных и активных элементов устройств фотоники, квантовой электроники и оптики. Способ образования центров окраски в алмазе включает облучение алмаза с однородным распределением по объему А-агрегатов и с их концентрацией не менее 1018 см-3 ионизирующим излучением с энергией не менее 1 МэВ дозой 100-120 част./см2 на каждый А-агрегат. При этом облучение с промежуточным отжигом при температуре 850-900 К проводят многократно до получения заданной концентрации центров окраски, затем проводят отжиг алмаза в инертной среде при температуре 1200-2000 К в течение 0,5-2 ч. Технический результат заключается в обеспечении возможности получения высоких концентраций примесно-вакансионных центров окраски Н3 и Н4 с одновременным снижением концентрации центров тушения люминесценции.

 

Изобретение относится к области создания материалов для пассивных и активных элементов устройств фотоники, квантовой электроники и оптики.

Известен способ (US 5504767 A, МПК H01S 3/16, опубл. 02.04.1996) создания среды для лазерных приборов на основе алмаза, заключающийся в облучении алмаза во время роста алмаза из газовой фазы пучком ионов легирующего элемента. В качестве легирующего элемента может использоваться Ti, V, Cr, Fe, Со, Ni, Се, Pm, Pr, Nd, Sm, Eu, Gd, Tb, Gy, Ho, Er, Tm, Yb, U, Er.

Недостатками метода являются поликристалличность образующейся среды и высокие внутренние напряжения за счет внедрения элементов с большим атомным радиусом.

Известен способ образования Н3-центров окраски в алмазе (патент US 4638484, МПК H01S 3/16, опубл. 20.01.1987), заключающийся в облучении алмаза с дефектами A ионизирующим излучением с последующим отжигом, в том числе электронами с энергией более 1 МэВ, в том числе плотностью 20-50 мкА/см2, в том числе с последующим нагревом выше 900 K, в том числе с облучением гамма и рентгеновским излучением.

Недостатком способа является ограничение концентрации центров окраски допустимой дозой облучения.

Известен способ образования Н2-центров окраски в алмазе (патент US 4949347 А, МПК H01S 3/16, опубл. 14.08.1990), включающий отбор алмаза с концентрацией азота в форме дефектов С 1017 - 8.5×1019 см-3, облучение электронами с энергией 0.5-5 МэВ, дозой 5⋅1017 част./см2, отжиг алмаза в инертной среде при температуре 1400-1850°С.

Недостатком способа является ограничение концентрации центров окраски допустимой дозой облучения, работа полученного материала в ИК-диапазоне.

Известен способ образования N-V и Н3 центров окраски в алмазе (патент US 4880613 А, МПК H01S 3/16, опубл. 14.11.1989), включающий отбор алмаза с концентрацией азота в форме дефектов С и А 1017 - 2×1020 см-3, облучение электронами с дозой 1017 - 1×1018 эл./см2, отжиг при температуре выше 1.700°С с давлением выше 3.0 ГПа, облучение пучком электронов или нейтронов, отжиг при температуре от 500° до 1.500°С с давлением ниже 1 Торр.

Недостатками способа являются ограничение концентрации центров окраски допустимой дозой облучения и низкая воспроизводимость оптических характеристик материала вследствие естественной неоднородности исходного материала.

Известен способ образования Н3-центров окраски в алмазе (патент РФ 1676409, МПК H01S 3/16, опубл. 27.02.1996, бюл. №6, 1996), принятый за прототип, включающий облучение алмаза с однородным распределением по объему А-агрегатов азота и с их концентрацией не менее 1018 см-3 ионизирующим излучением с энергией не менее 1 МэВ, дозой ионизирующего излучения 100-120 част./см2 на каждый А-агрегат, облучение алмаза в течение 0.1-1 ч и инфракрасным излучением с длиной волны 7.12 мкм, при этом разогревают алмаз до температуры 700 800 К и отжигают алмаз в инертной среде при температуре 1200-2000 К в течение 0.5-2 ч.

Недостатком способа является ограничение концентрации центров окраски допустимой дозой облучения.

Технический результат заключается в получении сверхвысоких концентраций примесно-вакансионных центров окраски в алмазе.

Технический результат достигается тем, что облучение с промежуточным отжигом при температуре 850-900 К проводят многократно до получения заданной концентрации центров окраски, затем проводят отжиг алмаза в инертной среде при температуре 1200-2000 К в течение 0.5-2 ч.

Способ осуществляется следующим образом: проводится отбор образцов с однородным распределением дефектов кристаллической структуры: 1) для получения алмаза с центрами окраски Н3 отбирают образцы с концентрацией азота в форме дефектов А в диапазоне 0.02-0.04%, при концентрации азота в форме дефектов В1 менее 0,005%; 2) для получения алмаза с центрами окраски Н4 отбираются образцы с концентрацией азота в форме А мене 0.005%, с концентрацией азота в форме дефектов В1 в диапазоне 0.04-0.08%. Однородность исходного вещества контролируется методом инфракрасной спектроскопии поглощения с использованием микроскопа так, чтобы вариации в изменении концентрации азота не превышали 10%.

Затем образцы подвергаются облучению ионизирующим излучением с энергией выше 1 МэВ и дозой 100-120 част./см2 на каждый А-агрегат. Затем проводят отжиг алмаза в инертной среде при температуре 850-900 К в течение 1 ч. Затем проводят повторный цикл обработки «облучение-отжиг». Далее проводится контрольная регистрация спектров поглощения в видимой области в диапазоне 400-800 нм и в инфракрасной области 7000-500 см-1 для определения концентрации Н3 центров, остаточной концентрации дефектов А и определения концентрации радиационных дефектов. При необходимости повышения концентрации Н3 центров цикл обработки облучение-отжиг повторяется. При достижении необходимой концентрации центров Н3 алмаз отжигают при температуре 1200-2000 К в инертной среде в течение 0.5-2 ч для восстановления структуры матрицы.

Пример

Исходный материал представлял собой пластину природного алмаза размером 3×4.5×0.5 мм с концентрацией азота в форме дефектов А 0.025%, в форме В1 0.0022%, и вариациями концентрации дефектов по площади пластины менее 10%, по результатам исследования методом локальной ИК-спектроскопии. Пластина облучалась в реакторе нейтронами с энергией более 1 МэВ и дозой 100 част./см2 на каждый А-агрегат. После облучения пластина стала визуально черной, зеленой на просвет. Затем образец отжигался в течение 1 ч при температуре 850 К. Затем зарегистрировали спектр поглощения видимой области и рассчитали концентрацию центров Н3, которая составила 3,2×1018 см-3. Затем провели повторный цикл облучения в реакторе нейтронами с энергией более 1 МэВ и дозой 100 част./см2 на каждый А-агрегат и отжига в течение 1 ч при температуре 850 К. По спектру поглощения в видимой области определили концентрацию центров Н3, как 4,6×1018 см-3. Затем провели еще один цикл облучения в реакторе нейтронами с энергией более 1 МэВ и дозой 100 част./см2 на каждый А-агрегат и отжига в течение 1 ч при температуре 870 К. По спектру поглощения в видимой области определили концентрацию центров Н3, как 6.6×10 18 см-3. В результате обработки концентрация азота в форме дефектов А снизилась до 0,009%. Затем провели отжиг в инертной среде при температуре 1800 К в течение одного часа. Заявленный способ позволяет получать более высокие концентрации оптически-активных центров по сравнению с аналогом, проводить снижение концентрации центров тушения люминесценции за счет перевода их в центры окраски Н3 и Н4.

Представленный способ позволяет получать сверхвысокие концентрации примесно-вакансионных центров окраски Н3 и Н4 с одновременным снижением концентрации центров тушения люминесценции и может найти применение при создании новых устройств фотоники, квантовой электроники и оптики.

Способ образования центров окраски в алмазе, включающий облучение алмаза с однородным распределением по объему А-агрегатов и с их концентрацией не менее 1018 см-3 ионизирующим излучением с энергией не менее 1 МэВ дозой 100-120 част./см2 на каждый А-агрегат, отличающийся тем, что облучение с промежуточным отжигом при температуре 850-900 К проводят многократно до получения заданной концентрации центров окраски, затем проводят отжиг алмаза в инертной среде при температуре 1200-2000 К в течение 0,5-2 ч.

rss